版权说明 操作指南
首页 > 成果 > 详情

On products of consecutive arithmetic progressions. III

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zhang, Y.*
通讯作者:
Zhang, Y.
作者机构:
[Zhang, Y.] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410114, Peoples R China.
[Zhang, Y.] Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Peoples R China.
通讯机构:
[Zhang, Y.] C
[Zhang, Y.] H
Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410114, Peoples R China.
Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Peoples R China.
语种:
英文
关键词:
consecutive arithmetic progression;Diophantine equation;Pell equation;positiveinteger solution
期刊:
Acta Mathematica Hungarica
ISSN:
0236-5294
年:
2021
卷:
163
期:
2
页码:
407-428
基金类别:
National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [11501052]; Younger Teacher Development Program of Changsha University of Science and Technology [2019QJCZ051]; Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering (Changsha University of Science and Technology); Natural Science Foundation of Zhejiang ProvinceNatural Science Foundation of Zhejiang Province [LY18A010016]
机构署名:
本校为第一且通讯机构
院系归属:
数学与统计学院
摘要:
Let $$f(x, k, d) = x(x + d)\cdots(x + (k - 1)d)$$ be a polynomial with $$k \geq 2, d \geq 1$$ . We consider the Diophantine equation $$\prod_{i=1}^{r} f(x_i, k_i, d) = y^{2}, r \geq 1$$ . Using the theory of Pell equations, we affirm a conjecture of Bennett and van Luijk [3]; extend some results of this Diophantine equation for $$d=1$$ , and give a positive answer to Question 3.2 of Zhang [19].

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com