版权说明 操作指南
首页 > 成果 > 详情

A fast and accurate detection model of internal defects in tunnel lining for ground penetrating radar image data

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Yang, Hao;Zhou, Shirong*;Liu, Liyan;Zhou, Zhong
通讯作者:
Zhou, Shirong;Zhou, Z
作者机构:
[Yang, Hao] Changsha Univ Sci & Technol, Natl Engn Res Ctr Highway Maintenance Technol, Changsha 410114, HN, Peoples R China.
[Yang, Hao; Liu, Liyan] Changsha Univ Sci & Technol, Sch Transportat, Changsha 410114, HN, Peoples R China.
[Zhou, Zhong; Zhou, Shirong] Cent South Univ, Sch Civil Engn, Changsha 410075, HN, Peoples R China.
通讯机构:
[Zhou, SR; Zhou, Z ] C
Cent South Univ, Sch Civil Engn, Changsha 410075, HN, Peoples R China.
语种:
英文
关键词:
Tunnel engineering;Lining defects;Deep learning;Ground-penetrating radar images
期刊:
Advanced Engineering Informatics
ISSN:
1474-0346
年:
2025
卷:
68
页码:
103812
基金类别:
National Natural Science Foundation of China [52478426, 52478443]; Hunan Provincial National Natural Science Foundation of China [2024JJ5428, 2023JJ40050]; Scientific Research Project of Department of Education for Outstanding Young Scholars of Hunan Province [23B0315]; Open Fund of the National Engineering Research Center of Highway Maintenance Technology (Changsha University of Science Technology) [kfj220101]
机构署名:
本校为第一机构
院系归属:
交通运输工程学院
摘要:
Defects in tunnel linings accelerate structural deterioration, reduce service life, and pose serious safety risks. Existing algorithms for detecting defect signals in ground-penetrating radar (GPR) images often struggle to balance accuracy and efficiency, with limited capacity to extract meaningful features. To address these limitations, this paper proposes a lightweight algorithm, MGD-DETR, for accurate recognition of internal tunnel lining defects, using RT-DETR as the base model. First, a Multi-HGNet backbone feature extraction network is in...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com