版权说明 操作指南
首页 > 成果 > 详情

Short term traffic flow prediction based on improved support vector machine

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zhang, Yuchi;Hou, Zhixiang
通讯作者:
Hou, Zhixiang(736688480@qq.com)
作者机构:
[Zhang, Yuchi] Hunan Industry Polytechnic, Changsha, Hunan, 410082, China
[Hou, Zhixiang] College of Automotive and Mechanical Engineering, Changsha University of Science and Technology, Changsha, 410114, China
通讯机构:
College of Automotive and Mechanical Engineering, Changsha University of Science and Technology, Changsha, China
语种:
英文
关键词:
Forecasting;Particle swarm optimization (PSO);Reactive power;Support vector machines;Urban transportation;Vectors;Improved particle swarms;Kernel function parameters;Parameter selection;Short-term traffic flow;Time-varying characteristics;Traffic flow prediction;Traffic prediction model;Urban transportation systems;Street traffic control
期刊:
Journal of Applied Science and Engineering
ISSN:
2708-9967
年:
2018
卷:
21
期:
1
页码:
25-32
基金类别:
The paper was financial supported by the China Natural Science Foundation (No. 51678077).
机构署名:
本校为通讯机构
院系归属:
汽车与机械工程学院
摘要:
The traditional forecasting methods are not suitable for short term traffic flow prediction, due to strong non-linear, time varying characteristics of urban transportation system. In order to improve forecasting accuracy of short term traffic flow, short term traffic flow prediction model based on support vector machine is presented. The most important parameter of support vector machine is parameter selection including the kernel function parameter and the penalty factor, which has significant influence on the properties of model prediction. P...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com