版权说明 操作指南
首页 > 成果 > 详情

Diagnostic Method for Load Deviation in Ultra-Supercritical Units Based on MLNaNBDOS

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Tang, Mingzhu;Huang, Yujie;Ji, Dongxu;Yu, Hao
通讯作者:
Yu, H
作者机构:
[Huang, Yujie; Tang, Mingzhu] Changsha Univ Sci & Technol, Sch Energy & Power Engn, Changsha 410114, Peoples R China.
[Ji, Dongxu; Yu, Hao] Chinese Univ Hong Kong, Sch Sci & Engn, Shenzhen 518000, Peoples R China.
通讯机构:
[Yu, H ] C
Chinese Univ Hong Kong, Sch Sci & Engn, Shenzhen 518000, Peoples R China.
语种:
英文
关键词:
Ultra-supercritical units;load deviation;multi-label learning;class imbalance;data oversampling
期刊:
Frontiers in Heat and Mass Transfer
ISSN:
2151-8629
年:
2025
卷:
23
期:
1
页码:
95-129
基金类别:
National Natural Science Foundation of China [62173050]; Shenzhen Municipal Science and Technology Innovation Committee [KCXFZ20211020165004006]; Natural Science Foundation of Hunan Province of China [2023JJ30051]; Hunan Provincial Graduate Student Research Innovation Project [QL20230214]; Major Scientific and Technological Innovation Platform Project of Hunan Province [2024JC1003]; Hunan Provincial University Students' Energy Conservation and Emission Reduc-tion Innovation and Entrepreneurship Education Center [2019-10]
机构署名:
本校为第一机构
院系归属:
能源与动力工程学院
摘要:
Load deviations between the output of ultra-supercritical (USC) coal-fired power units and automatic generation control (AGC) commands can adversely affect the safe and stable operation of these units and grid load dispatching. Data-driven diagnostic methods often fail to account for the imbalanced distribution of data samples, leading to reduced classification performance in diagnosing load deviations in USC units. To address the class imbalance issue in USC load deviation datasets, this study proposes a diagnostic method based on the multi-label natural neighbor boundary oversampling techniq...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com