版权说明 操作指南
首页 > 成果 > 详情

A trilinear estimate with application to the perturbed nonlinear Schrödinger equations with the Kerr law nonlinearity

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zhang, Zaiyun*;Liu, Zhenhai;Deng, Youjun;Li, Limei;He, Fan;...
通讯作者:
Zhang, Zaiyun
作者机构:
[Zhang, Zaiyun; He, Fan; Li, Limei] Hunan Inst Sci & Technol, Sch Math, Yueyang 414006, Hunan, Peoples R China.
[Liu, Zhenhai] Yulin Normal Univ, Sch Math & Stat, Yulin 537000, Guangxi, Peoples R China.
[Liu, Zhenhai] Guangxi Univ Nationalities, Coll Sci, Nanning 530006, Guangxi Provinc, Peoples R China.
[Deng, Youjun] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China.
[Huang, Chuangxia] Changsha Univ Sci & Technol, Hunan Prov Key Lab Math Modeling & Anal Engn, Sch Math & Stat, Changsha 410014, Hunan, Peoples R China.
通讯机构:
[Zhang, Zaiyun] H
Hunan Inst Sci & Technol, Sch Math, Yueyang 414006, Hunan, Peoples R China.
语种:
英文
关键词:
Perturbed nonlinear Schrödinger equations with Kerr law nonlinearity;Fourier restriction norm method;Low regularity;Local well-posedness (LWP)
期刊:
Journal of Evolution Equations
ISSN:
1424-3199
年:
2021
卷:
21
期:
2
页码:
1477-1494
基金类别:
This work was supported by Hunan Provincial Natural Science Foundation of China Nos. 2016JJ2061, 2020JJ2038, Scientific Research Fund of Hunan Provincial Education Department Nos. 18A325, 17A087, 17C0711, NNSF of China Grant Nos. 11671101, 11971487, NSF of Guangxi (2018GXNSFDA138002), the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska–Curie (823731CONMECH) and Special Funds of Guangxi Distinguished Experts Construction Engineering. Also, this work was partially supported by Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering of Changsha University of Science and Technology Grant No. 2018MMAEZD05, Open project of Hainan Key Laboratory of Computing Science and Application No. JSKX201905 and NNSF of China Grant Nos. 71471020, 51839002.
机构署名:
本校为其他机构
院系归属:
数学与统计学院
摘要:
In this paper, we investigate the initial value problem (IVP henceforth) associated with the perturbed nonlinear Schrödinger equations with the Kerr law nonlinearity. First, by using Fourier restriction norm method and Tao’s [k,Z]-multiplier method, we establish a trilinear estimate on the Bourgain space Xs,b. Then, combining the trilinear estimate with the contraction mapping principle, we prove that IVP is locally well-posed for the initial data (u(x) , v(x)) ∈ Hs(R) × H...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com