版权说明 操作指南
首页 > 成果 > 详情

Sparse and robust mean–variance portfolio optimization problems

认领
导出
下载 Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Dai, Zhifeng*;Wang, Fei
通讯作者:
Dai, Zhifeng
作者机构:
[Dai, Zhifeng; Wang, Fei] Changsha Univ Sci & Technol, Coll Math & Stat, Changsha, Hunan, Peoples R China.
[Dai, Zhifeng] Changsha Univ Sci & Technol, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha, Hunan, Peoples R China.
通讯机构:
[Dai, Zhifeng] C
Changsha Univ Sci & Technol, Coll Math & Stat, Changsha, Hunan, Peoples R China.
Changsha Univ Sci & Technol, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha, Hunan, Peoples R China.
语种:
英文
关键词:
Portfolio optimization;Mean-variance portfolio;Regularization;Robust optimization
期刊:
Physica A-Statistical Mechanics and its Applications
ISSN:
0378-4371
年:
2019
卷:
523
页码:
1371-1378
基金类别:
NSF of ChinaNational Natural Science Foundation of China (NSFC) [71771030, 11301041, 71671018]; Scientific Research Fund of Hunan Provincial Education DepartmentHunan Provincial Education Department [16B005]
机构署名:
本校为第一且通讯机构
院系归属:
数学与统计学院
摘要:
Mean-variance portfolios have been criticized because of unsatisfying out-of-sample performance and the presence of extreme and unstable asset weights. The bad performance is caused by estimation errors in inputs parameters, that is the covariance matrix and the expected return vector, especially the expected return vector. This topic has attracted wide attention. In this paper, we aim to find better portfolio optimization model to reduce the undesired impact of parameter uncertainty and estimation errors of mean-variance portfolio model. Firstly, we introduce a sparse mean-variance portfolio ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com