版权说明 操作指南
首页 > 成果 > 详情

Good distance graphs and the geometry of matrices

认领
导出
下载 Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Huang, Li-Ping*
通讯作者:
Huang, Li-Ping
作者机构:
[Huang, Li-Ping; Huang, LP] Changsha Univ Sci & Technol, Sch Math & Comp Sci, Changsha 410076, Hunan, Peoples R China.
通讯机构:
[Huang, Li-Ping] C
Changsha Univ Sci & Technol, Sch Math & Comp Sci, Changsha 410076, Hunan, Peoples R China.
语种:
英文
关键词:
Adjacency relations;Characteristic 2;Distance geometry;Distance graphs;Division ring with an involution;Geometry of matrices;Graph isomorphism;Hermitian matrices;Positive integers;Surjective;Vertex set;Computational geometry;Set theory;Theorem proving
期刊:
Linear Algebra and its Applications
ISSN:
0024-3795
年:
2010
卷:
433
期:
1
页码:
221-232
基金类别:
National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [10671026]
机构署名:
本校为第一且通讯机构
院系归属:
数学与统计学院
摘要:
Denote by G = (V, ∼) a graph which V is the vertex set and ∼ is an adjacency relation on a subset of V × V. In this paper, the good distance graph is defined. Let (V, ∼) and (V′, ∼′) be two good distance graphs, and φ : V → V′ be a map. The following theorem is proved: φ is a graph isomorphism ⇔ φ is a bounded distance preserving surjective map in both directions ⇔ φ is a distance k preserving surjective map in both directions (where k < diam (G) / 2 is a positive integer), etc. Let D be a division ring with an involution over...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com