版权说明 操作指南
首页 > 成果 > 详情

A new generative adversarial networks-based fault diagnosis framework: Learning a mapping to estimate fault

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Li, Ling;Pan, Zhuofu;Ma, Yucheng;Chen, Zhiwen;Chen, Jie;...
通讯作者:
Pan, ZF
作者机构:
[Li, Ling; Chen, Zhiwen; Ma, Yucheng] Changsha Univ Sci & Technol, Sch Elect & Informat Engn, Changsha 410114, Hunan, Peoples R China.
[Pan, Zhuofu] Xiangjiang Lab, Changsha 410205, Hunan, Peoples R China.
[Pan, Zhuofu] Hunan Univ Technol & Business, Sch Microelect & Phys, Changsha 410205, Hunan, Peoples R China.
[Chen, Zhiwen; Wang, Yalin] Cent South Univ, Sch Automat, Changsha 410083, Hunan, Peoples R China.
[Chen, Jie] Hunan Univ Technol & Business, Sch Comp Sci, Changsha 410205, Hunan, Peoples R China.
通讯机构:
[Pan, ZF ] X
Xiangjiang Lab, Changsha 410205, Hunan, Peoples R China.
Hunan Univ Technol & Business, Sch Microelect & Phys, Changsha 410205, Hunan, Peoples R China.
语种:
英文
关键词:
Fault detection and estimation;Generative adversarial networks;Fault elimination mapping;Chemical processes
期刊:
Neurocomputing
ISSN:
0925-2312
年:
2025
卷:
622
页码:
129288
基金类别:
CRediT authorship contribution statement Ling Li: Methodology, Formal analysis, acquisition, Writing – review & editing. Zhuofu Pan: Conceptualization, Software, Visualization, Writing – original draft, review & editing. Yucheng Ma: Investigation, Visualization, Validation, Writing – original draft & editing.. Zhiwen Chen: Methodology. Jie Chen: Methodology, Formal analysis. Yalin Wang: Supervision, acquisition, Project administration..
机构署名:
本校为第一机构
院系归属:
电气与信息工程学院
摘要:
Thanks to the strong generalization and generation capabilities, Generative Adversarial Networks (GANs) have been developed for fault diagnosis schemes in recent years. Most of them are constructed as data enhancers for generating few-shot faulty samples and serve for the fault classification task. However, classifier-based fault diagnosis frameworks have difficulty in recognizing new fault classes and estimating fault magnitudes. In order to exploit the potential of GAN for fault detection and estimation, this paper proposes a Fault-estimable AutoEncoder-GAN (FAE-GAN), which uses a new framew...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com