版权说明 操作指南
首页 > 成果 > 详情

Damage identification of a reduced-scale cable-stayed bridge based on domain adaptation transfer learning

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Lu, Naiwei;Cui, Jian;Zeng, Weiming;Xiao, Xiangyuan;Luo, Yuan
通讯作者:
Cui, J
作者机构:
[Lu, Naiwei; Zeng, Weiming; Cui, Jian; Xiao, Xiangyuan] Changsha Univ Sci & Technol, Sch Civil Engn, 960 Wanjiali South Rd, Changsha 410114, Hunan, Peoples R China.
[Luo, Yuan] Hunan Univ Technol, Coll Civil Engn, Zhuzhou 412007, Peoples R China.
通讯机构:
[Cui, J ] C
Changsha Univ Sci & Technol, Sch Civil Engn, 960 Wanjiali South Rd, Changsha 410114, Hunan, Peoples R China.
语种:
英文
关键词:
Bridge damage localization;Vibration;Finite element model;Transfer learning;Time-frequency analysis
期刊:
Measurement
ISSN:
0263-2241
年:
2026
卷:
257
页码:
118674
基金类别:
CRediT authorship contribution statement Naiwei Lu: Writing – review & editing, Validation, Supervision, Resources, Project administration, acquisition, Conceptualization. Jian Cui: Writing – original draft, Visualization, Software, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Weiming Zeng: Visualization, Validation, Investigation. Xiangyuan Xiao: Visualization, Formal analysis, Data curation. Yuan Luo: Visualization, acquisition, Formal analysis, Data curation.
机构署名:
本校为第一且通讯机构
院系归属:
土木工程学院
摘要:
The complex structural systems of large bridges pose challenges for damage identification using traditional mechanical or data-driven methods. A key limitation of supervised machine learning methods is the lack of effective samples representing structural damage conditions. A novel domain adaptation transfer learning (TL) method, SE-TL-ResNet34 model, is proposed for structural damage identification, enabling the balanced training and reducing overfitting. First, convolutional neural networks (CNNs) were utilized to extract modal damage feature...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com