版权说明 操作指南
首页 > 成果 > 详情

A lightweight intrusion detection system for connected autonomous vehicles based on ECANet and image encoding

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zhuoqun Xia;Longfei Huang*;Jingjing Tan;Yongbin Yu;Wei Hao;...
通讯作者:
Longfei Huang
作者机构:
[Zhuoqun Xia; Longfei Huang; Jingjing Tan; Yongbin Yu] School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha 410114, China
[Wei Hao] School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114, China
[Kejun Long] Hunan Key Laboratory of Smart Roadway and Cooperative Vehicle-Infrastructure Systems, Changsha 410114, China
通讯机构:
[Longfei Huang] S
School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha 410114, China
语种:
英文
期刊:
Journal of Information Security and Applications
ISSN:
2214-2126
年:
2025
卷:
92
页码:
104082
机构署名:
本校为第一且通讯机构
院系归属:
交通运输工程学院
计算机与通信工程学院
摘要:
The Controller Area Network (CAN) bus plays an essential role in Connected Autonomous Vehicles (CAVs), yet its inherent design limitations regarding data protection make it susceptible to malicious intrusions. Contemporary research in intrusion detection predominantly employs Long Short-Term Memory (LSTM) models to analyze CAN IDs as time series data. However, the high computational complexity of LSTM models makes them unsuitable for resource constrained in-vehicle network. To address this problem, a lightweight IDS combining image encoding and an Efficient Channel Attention (ECA) network is p...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com