版权说明 操作指南
首页 > 成果 > 详情

Stability and instability of solitary-wave solutions for the nonlinear Klein-Gordon equation

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Jing Li;Yue Liu;Yifei Wu;Haohao Zheng*
通讯作者:
Haohao Zheng
作者机构:
[Jing Li] School of Mathematics and Statistics, Changsha University of Science and Technology, Changsha 410114, China
[Yue Liu] Department of Mathematics, University of Texas at Arlington, TX 76019, United States of America
[Yifei Wu] School of Mathematical Sciences and Mathematical Institute / Ministry of Education Key Laboratory of NSLSCS, Nanjing Normal University, Nanjing 210023, China
[Haohao Zheng] Center for Applied Mathematics, Tianjin University, Tianjin 300072, China
通讯机构:
[Haohao Zheng] C
Center for Applied Mathematics, Tianjin University, Tianjin 300072, China
语种:
英文
期刊:
Journal of Functional Analysis
ISSN:
0022-1236
年:
2025
卷:
289
期:
6
页码:
110981
机构署名:
本校为第一机构
院系归属:
数学与统计学院
摘要:
The nonlinear Klein-Gordon (KG) equation, ∂ t t u − Δ u + u = | u | p − 1 u , ( t , x ) ∈ R × R d is shown in the present paper to possess the solitary-wave solutions in the form of e i ω t ϕ ω , c → ( x − c → t ) with the parameters ω and c → ∈ R d satisfying | ω | < 1 − | c → | 2 and | c → | < 1 . By employing a new localized virial identity combined with the coercivity and modulation argument, it is demonstrated here that there exists a critical frequency ω ⁎ ( | c → | ) such that these localized solitary waves, when co...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com