版权说明 操作指南
首页 > 成果 > 详情

RBF Neural Network Based Dual Adaptive Control Strategy for Inertia Damping of DFIG-VSG System

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
会议论文
作者:
Jie Peng;Shiping Su
作者机构:
[Jie Peng; Shiping Su] Department of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha, China
语种:
英文
关键词:
virtual synchronous control;doubly-fed induction generator;radial-based neural network neural network;adaptive control
年:
2025
页码:
98-102
会议名称:
2025 5th International Conference on Mechanical, Electronics and Electrical and Automation Control (METMS)
会议论文集名称:
2025 5th International Conference on Mechanical, Electronics and Electrical and Automation Control (METMS)
会议时间:
09 May 2025
会议地点:
Chongqing, China
出版者:
IEEE
ISBN:
979-8-3315-3448-6
机构署名:
本校为第一机构
院系归属:
电气与信息工程学院
摘要:
With the expansion of new energy grid connection scale, the penetration rate of wind turbine increases significantly, which leads to the deterioration of power system inertia and damping characteristics, affecting the stable operation of power grid. Aiming at the problem of insufficient dynamic response due to fixed parameters in the virtual synchronization control strategy of doubly-fed wind turbine, this paper proposes a dual-adaptive control strategy based on radial basis function (RBF) neural network for inertia and damping of DFIG-VSG syst...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com