版权说明 操作指南
首页 > 成果 > 详情

Interpretable machine learning excavates a low-alloyed magnesium alloy with strength-ductility synergy based on data augmentation and reconstruction

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Qinghang Wang*;Xu Qin;Shouxin Xia;Li Wang;Weiqi Wang;...
通讯作者:
Qinghang Wang
作者机构:
[Qinghang Wang; Xu Qin; Shouxin Xia; Li Wang] School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
[Weiqi Wang] School of Materials and Energy, Yunnan University, Kunming 650599, China
[Weiying Huang] Institute of Energy and Power Engineering, Changsha University of Science and Technology, Changsha 410083, China
[Yan Song] Department of Components and Materials Test & Evaluation Research Center, China Automotive Engineering Research Institute (CAERI), Chongqing 401122, China
[Weineng Tang] Technology Center, Baosteel Metal Co., Ltd, Shanghai 200940, China
通讯机构:
[Qinghang Wang] S
School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
语种:
英文
关键词:
Magnesium alloy;Interpretable machine learning;Alloy design;Hetero-structure;Strength-ductility synergy
期刊:
镁合金学报(英文)
ISSN:
2213-9567
年:
2025
机构署名:
本校为其他机构
院系归属:
能源与动力工程学院
摘要:
The application of machine learning in alloy design is increasingly widespread, yet traditional models still face challenges when dealing with limited datasets and complex nonlinear relationships. This work proposes an interpretable machine learning method based on data augmentation and reconstruction, excavating high-performance low-alloyed magnesium (Mg) alloys. The data augmentation technique expands the original dataset through Gaussian noise. The data reconstruction method reorganizes and transforms the original data to extract more representative features, significantly improving the mod...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com