版权说明 操作指南
首页 > 成果 > 详情

A boundary-assimilation Fourier neural operator for predicting initial fields of flow around structures

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Xie, Yulin;Deng, Bin;Jiang, Changbo;Lv, Chaofan
通讯作者:
Jiang, CB
作者机构:
[Jiang, Changbo; Jiang, CB; Deng, Bin; Xie, Yulin] Changsha Univ Sci & Technol, Sch Hydraul & Environm Engn, Changsha 410114, Peoples R China.
[Xie, Yulin; Lv, Chaofan] Zhejiang Univ, Ocean Coll, Zhoushan 316021, Peoples R China.
[Lv, Chaofan] Changjiang River Sci Res Inst, Wuhan 430010, Peoples R China.
通讯机构:
[Jiang, CB ] C
Changsha Univ Sci & Technol, Sch Hydraul & Environm Engn, Changsha 410114, Peoples R China.
语种:
英文
期刊:
Physics of Fluids
ISSN:
1070-6631
年:
2025
卷:
37
期:
2
页码:
027148
基金类别:
National Natural Science Foundation of China10.13039/501100001809 [52479063, 51979015]; National Natural Science Foundation of China [HESS-2114]; Open Fund of the State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University
机构署名:
本校为第一且通讯机构
摘要:
Repeatedly solving flow around structures with varying parameters using computational fluid dynamics (CFD) is often essential for structural design. This study proposes a boundary-assimilation Fourier neural operator (BAFNO) method to address the challenges of manually setting initial conditions for CFD. The focus of the BAFNO is on the generalization ability to predict initial flow fields without relying on observational data. BAFNO addresses the boundary constraint requirements of the existing physics-informed neural operator models in parametric geometries. Inspired by the ghost node method...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com