版权说明 操作指南
首页 > 成果 > 详情

Extending Hua’s theorem on the geometry of matrices to Bezout domains

认领
导出
下载 Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Huang, Li-Ping*
通讯作者:
Huang, Li-Ping
作者机构:
[Huang, Li-Ping; Huang, LP] Changsha Univ Sci & Technol, Sch Math & Comp Sci, Changsha 410004, Hunan, Peoples R China.
通讯机构:
[Huang, Li-Ping] C
Changsha Univ Sci & Technol, Sch Math & Comp Sci, Changsha 410004, Hunan, Peoples R China.
语种:
英文
关键词:
Adjacency preserving;Bezout domain;Geometry of matrices;Isomorphism;Local ring;Geometry;Set theory;Matrix algebra
期刊:
Linear Algebra and its Applications
ISSN:
0024-3795
年:
2012
卷:
436
期:
7
页码:
2446-2473
基金类别:
Supported by Scientific Research Fund of Hunan Provincial Education Department (Grant No. 10A002). E-mail addresses: lipingmath@sohu.com, lipingmath@163.com.
机构署名:
本校为第一且通讯机构
院系归属:
数学与统计学院
摘要:
This paper extends Hua's theorem on the geometry of rectangular matrices over a division ring to the case of Bezout domains. Let m,n, m′, n′ be integers ≥2, R an R′ be two Bezout domains. Assume that :Rm× n→R′m′× n′ is an adjacency preserving bijective map in both directions. Further, assume that R′ is a local ring, or is an invertibility preserving map, or is an additive map. This paper obtains the algebraic formulas of . As applications, the ring semi-isomorphisms from Rm× n to R′ m′× n′ are characterized, and the group isomor...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com