版权说明 操作指南
首页 > 成果 > 详情

Intelligent prediction on air intake flow of spark ignition engine by a chaos radial basis function neural network [基于混沌径向基函数神经网络的汽油机进气流量的智能预测]

认领
导出
Link by 中国知网学术期刊 Link by 万方学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Li, Yue-lin;Liu, Bo-fu;Wu, Gang*;Liu, Zhi-qiang;Ding, Jing-feng;...
通讯作者:
Wu, Gang
作者机构:
[Li, Yue-lin; Liu, Bo-fu; Liu, Zhi-qiang; Ding, Jing-feng; Wu, Gang] Key Lab Safety & Design & Reliabil Technol Engn V, Changsha 410114, Peoples R China.
[Li, Yue-lin; Liu, Zhi-qiang; Ding, Jing-feng; Wu, Gang] Changsha Univ Sci & Technol, Coll Automot & Mech Engn, Changsha 410114, Peoples R China.
[Abubakar, Shitu] Cent South Univ, Coll Mech & Elect Engn, Changsha 410083, Peoples R China.
通讯机构:
[Wu, Gang] K
[Wu, Gang] C
Key Lab Safety & Design & Reliabil Technol Engn V, Changsha 410114, Peoples R China.
Changsha Univ Sci & Technol, Coll Automot & Mech Engn, Changsha 410114, Peoples R China.
语种:
英文
关键词:
intake air flow;spark ignition engine;chaos;RBF neural network
关键词(中文):
进气流量;汽油机;混沌;径向基函数神经网络
期刊:
中南大学学报(英文版)
ISSN:
2095-2899
年:
2020
卷:
27
期:
9
页码:
2687-2695
基金类别:
Project(51176014) supported by the National Natural Science Foundation of China, Project(2016JJ2003) supported by Natural Science Foundation Project of Hunan Province, China; Project(KF1605) supported by Key Laboratory of Safety Design and Reliability Technology of Engineering Vehicle in Hunan Province, China
机构署名:
本校为通讯机构
院系归属:
汽车与机械工程学院
摘要:
To ensure the control of the precision of air-fuel ratio (AFR) of port fuel injection (PFI) spark ignition (SI) engines, a chaos radial basis function (RBF) neural network is used to predict the air intake flow of the engine. The data of air intake flow is proved to be multidimensionally nonlinear and chaotic. The RBF neural network is used to train the reconstructed phase space of the data. The chaos algorithm is employed to optimize the weights of output layer connection and the radial basis center of Gaussian function in hidden layer. The simulation results obtained from Matlab/Simulink ill...
摘要(中文):
为了确保进气道喷射燃料汽油机的空燃比的控制精度,本文使用混沌径向基函数神经网络来预测进气流量。由于进气流量时间序列被证明是多维非线性和混沌的,于是选用径向基函数神经网络用于训练初始数据的重构相空间。然后,利用混沌算法定义输出层连接权重和隐层的高斯函数径向基中心,加快网络的收敛速度。通过Matlab/Simulink软件进行仿真,结果表明该模型可以获得比单纯的径向基函数神经网络模型更高的预测精度。对于实验与仿真数据,混沌径向基函数神经网络模型预测值的平均绝对误差达到0.001715,平均相对误差达到0.48205。

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com