版权说明 操作指南
首页 > 成果 > 详情

Bifurcations and dynamics of a plant disease system under non-smooth control strategy

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Li, Wenjie*;Ji, Jinchen;Huang, Lihong;Wang, Jiafu
通讯作者:
Li, Wenjie
作者机构:
[Huang, Lihong; Li, Wenjie] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China.
[Ji, Jinchen] Univ Technol Sydney, Sch Mech & Mechatron Engn, Ultimo, NSW 2007, Australia.
[Huang, Lihong; Wang, Jiafu] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410114, Peoples R China.
[Huang, Lihong; Wang, Jiafu] Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Hunan, Peoples R China.
通讯机构:
[Li, Wenjie] H
Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China.
语种:
英文
关键词:
Bifurcation (mathematics);Dynamics;Lyapunov functions;Biological implications;Boundary equilibrium;Discontinuous surfaces;Disease-free equilibrium;Endemic equilibrium;Global behaviors;Plant systems;Sliding mode dynamics;Disease control
期刊:
Nonlinear Dynamics
ISSN:
0924-090X
年:
2020
卷:
99
期:
4
页码:
3351-3371
基金类别:
This work is supported in part by the National Natural Science Foundation of China (11771059) and the China Scholarship Council (CSC) (201806130100).
机构署名:
本校为其他机构
院系归属:
数学与统计学院
摘要:
Mathematical models and analyses can assist in designing the control strategies to prevent the spread of infectious disease. The present paper investigates the bifurcations and dynamics of a plant disease system under non-smooth control strategy. The generalized Lyapunov approach is employed to perform the analysis of the plant disease model with non-smooth control. It is found that the controlled disease system can have three types of equilibria. The globally asymptotically attractor for each of three types of equilibria is determined by const...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com