版权说明 操作指南
首页 > 成果 > 详情

A modified hestenes-stiefel-type derivative-free method for large-scale nonlinear monotone equations

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Dai, Zhifeng*;Zhu, Huan
通讯作者:
Dai, Zhifeng
作者机构:
[Dai, Zhifeng; Zhu, Huan] Changsha Univ Sci & Technol, Coll Math & Computat Sci, Changsha 410114, Peoples R China.
通讯机构:
[Dai, Zhifeng] C
Changsha Univ Sci & Technol, Coll Math & Computat Sci, Changsha 410114, Peoples R China.
语种:
英文
关键词:
nonlinear equations;monotonicity property;projection method;global convergence
期刊:
Mathematics
ISSN:
2227-7390
年:
2020
卷:
8
期:
2
页码:
168
基金类别:
Acknowledgments: This work was supported by the National Natural Science Foundation of China, grants 71771030, and 11301041; and the Scientific Research Fund of Hunan Provincial Education Department, grant number 19A007. This research is supported by the NSF of China granted 71771030, 11301041, and fund of Hunan Provincial Education Department granted 19A007. This work was supported by the National Natural Science Foundation of China, grants 71771030, and 11301041; and the Scientific Research Fund of Hunan Provincial Education Department, grant number 19A007. Funding: This research is supported by the NSF of China granted 71771030, 11301041, and fund of Hunan Provincial Education Department granted 19A007.
机构署名:
本校为第一且通讯机构
院系归属:
数学与统计学院
摘要:
The goal of this paper is to extend the modified Hestenes-Stiefel method to solve large-scale nonlinear monotone equations. The method is presented by combining the hyperplane projection method (Solodov, M.V.; Svaiter, B.F. A globally convergent inexact Newton method for systems of monotone equations, in: M. Fukushima, L. Qi (Eds.)Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, Kluwer Academic Publishers. 1998, 355-369) and the modified Hestenes-Stiefel method in Dai and Wen (Dai, Z.; Wen, F. Global convergence of ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com