版权说明 操作指南
首页 > 成果 > 详情

Fake Face Detection Based on Fusion of Spatial Texture and High-Frequency Noise

认领
导出
Link by 中国知网学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zhang, Dengyong;Qi, Feifan;Chen, Jiahao;Chen, Jiaxin;Gong, Rongrong;...
通讯作者:
Zhang, DY
作者机构:
[Chen, Jiaxin; Zhang, DY; Qi, Feifan; Chen, Jiahao; Zhang, Dengyong] Changsha Univ Sci & Technol, Sch Comp & Commun Engn, Hunan Prov Key Lab Intelligent Proc Big Data Trans, Changsha 410004, Peoples R China.
[Chen, Jiaxin; Zhang, DY; Qi, Feifan; Chen, Jiahao; Zhang, Dengyong] Changsha Univ Sci & Technol, Sch Comp & Commun Engn, Changsha 410004, Peoples R China.
[Gong, Rongrong] Changsha Social Work Coll, Changsha 410004, Peoples R China.
[Tian, Yuehong] Changkuangao Beijing Technol Co Ltd, Beijing 101100, Peoples R China.
[Zhang, Lebing] Huaihua Univ, Sch Comp & Artificial Intelligence, Huaihua 418000, Peoples R China.
通讯机构:
[Zhang, DY ] C
Changsha Univ Sci & Technol, Sch Comp & Commun Engn, Hunan Prov Key Lab Intelligent Proc Big Data Trans, Changsha 410004, Peoples R China.
Changsha Univ Sci & Technol, Sch Comp & Commun Engn, Changsha 410004, Peoples R China.
语种:
英文
关键词:
Deepfakes detection;Steganalysis rich model;Image forensics;Mix attention;Deepfakes detection;Steganalysis rich model;Image forensics;Mix attention
期刊:
中国电子杂志(英文版)
ISSN:
1022-4653
年:
2025
卷:
34
期:
1
页码:
212-221
基金类别:
supported by the National Natural Science Foundation of China (Grant No. 62172059); Scientific Research Fund of Hunan Provincial Education Department of China (Grant No. 22A0200); Scientific Research Fund of Hunan Provincial Natural Science Foundation (Grant No. 2023JJ60257);
机构署名:
本校为第一且通讯机构
院系归属:
计算机与通信工程学院
摘要:
The rapid development of the Internet has led to the widespread dissemination of manipulated facial images, significantly impacting people's daily lives. With the continuous advancement of Deepfake technology, the generated counterfeit facial images have become increasingly challenging to distinguish. There is an urgent need for a more robust and convincing detection method. Current detection methods mainly operate in the spatial domain and transform the spatial domain into other domains for analysis. With the emergence of transformers, some researchers have also combined traditional convoluti...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com