版权说明 操作指南
首页 > 成果 > 详情

CerfeVPR: Cross-Environment Robust Feature Enhancement for Visual Place Recognition

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Xiang, Lingyun;Fu, Hang;Yang, Chunfang
通讯作者:
Yang, CF
作者机构:
[Fu, Hang; Xiang, Lingyun] Changsha Univ Sci & Technol, Sch Comp & Commun Engn, Changsha 410114, Peoples R China.
[Yang, Chunfang] Informat Engn Univ, Key Lab Cyberspace Situat Awareness Henan Prov, Zhengzhou 450001, Peoples R China.
通讯机构:
[Yang, CF ] I
Informat Engn Univ, Key Lab Cyberspace Situat Awareness Henan Prov, Zhengzhou 450001, Peoples R China.
语种:
英文
关键词:
Visual place recognition;cross-environment robustness;pre-trained model;feature learning
期刊:
计算机、材料和连续体(英文)
ISSN:
1546-2218
年:
2025
卷:
84
期:
1
页码:
325-345
基金类别:
Postgraduate Scientific Research Innovation Project of Hunan Province [CX20230915]; National Natural Science Foundation of China [62472440]
机构署名:
本校为第一机构
院系归属:
计算机与通信工程学院
摘要:
In the Visual Place Recognition (VPR) task, existing research has leveraged large-scale pre-trained models to improve the performance of place recognition. However, when there are significant environmental differences between query images and reference images, a large number of ineffective local features will interfere with the extraction of key landmark features, leading to the retrieval of visually similar but geographically different images. To address this perceptual aliasing problem caused by environmental condition changes, we propose a novel Visual Place Recognition method with Cross-En...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com