版权说明 操作指南
首页 > 成果 > 详情

Multi-Step Prediction Method for Wind Power: A Framework Integrating CNN–RNN–LGBM Models

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Wenchuan Meng*;Zaimin Yang;Zhi Rao;Siyang Sun;Yixin Zhuo;...
通讯作者:
Wenchuan Meng
作者机构:
[Wenchuan Meng; Zaimin Yang; Zhi Rao; Siyang Sun] Energy Development Research Institute, China Southern Power Grid, Guangzhou, Guangdong, China
[Yixin Zhuo] Controlling Center, Guangxi Power Grid, Nanning, Guangxi, China
[Junjie Zhong; Sheng Su] College of Electrical & Information Engineering, Changsha University of Science and Technology, Changsha, Hunan, China
通讯机构:
[Wenchuan Meng] E
Energy Development Research Institute, China Southern Power Grid, Guangzhou, Guangdong, China
语种:
英文
关键词:
building integrated photovoltaics;cascade control;wind power;photovoltaic power systems
期刊:
IET Renewable Power Generation
ISSN:
1752-1416
年:
2025
卷:
19
期:
1
页码:
e70079
基金类别:
: This study is supported by the Science and Technology Project of Guangxi Power Grid (Grant Number: 046000KK52220007).
机构署名:
本校为其他机构
院系归属:
电气与信息工程学院
摘要:
Wind power prediction plays a significant role in enhancing the effectiveness of power system operation and decision-making. Given the inherent stochastic nature of meteorological events, achieving highly accurate forecasts for wind power poses considerable challenges. To address this challenge, this paper initially leverages the time series learning capability of recurrent neural networks (RNN) to extract sequential information from historical wind power data. Subsequently, the information extracted from the convolutional layer is transferred ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com