版权说明 操作指南
首页 > 成果 > 详情

New sufficient conditions on the global exponential stability of delayed inertial neural networks

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Wang, Wentao;Zeng, Wei;Chen, Wei
通讯作者:
Chen, W
作者机构:
[Wang, Wentao] Shanghai Univ Engn Sci, Sch Math Phys & Stat, Shanghai 201620, Peoples R China.
[Zeng, Wei] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410114, Hunan, Peoples R China.
[Chen, Wei; Chen, W] Shanghai Lixin Univ Accounting & Finance, Sch Stat & Math, Shanghai 201209, Peoples R China.
通讯机构:
[Chen, W ] S
Shanghai Lixin Univ Accounting & Finance, Sch Stat & Math, Shanghai 201209, Peoples R China.
语种:
英文
关键词:
Inertial neural networks;Global exponential stability;Delay;Characteristics method;Reduced order method;Non-reduced order method
期刊:
Neurocomputing
ISSN:
0925-2312
年:
2025
卷:
622
页码:
129301
机构署名:
本校为其他机构
院系归属:
数学与统计学院
摘要:
In this paper, we utilize the characteristics method to deduce several novel sufficient conditions for the global exponential stability of delayed inertial neural networks (DINNs). The proposed criteria are presented as a set of linear scalar inequalities, which notably do not entail the use of either reduced order method or Lyapunov-Krasovskii functionals (LKFs), distinguishing them from existing results and offering straightforward solvability. Lastly, we substantiate the analytical outcomes through three numerical examples accompanied by respective simulations. In this paper, we utilize the...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com