版权说明 操作指南
首页 > 成果 > 详情

Traffic Control Method on Efficiency of Urban Expressway Accompanied Frequent Aggressive Driving Behavior

认领
导出
下载 Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Yu, Dan*;Wu, Yihu;Yu, Wei;Kou, Shiya;Yang, Na
通讯作者:
Yu, Dan
作者机构:
[Yang, Na; Yu, Wei; Yu, Dan; Wu, Yihu; Kou, Shiya] Changsha Univ Sci & Technol, Sch Traff Transportat Engn, Changsha 410004, Hunan, Peoples R China.
[Yu, Dan] Changsha Univ Sci & Technol, Engn Res Ctr Elect Power & Traff Safety Monitorin, Minist Educ, Changsha 410004, Hunan, Peoples R China.
通讯机构:
[Yu, Dan] C
Changsha Univ Sci & Technol, Sch Traff Transportat Engn, Changsha 410004, Hunan, Peoples R China.
Changsha Univ Sci & Technol, Engn Res Ctr Elect Power & Traff Safety Monitorin, Minist Educ, Changsha 410004, Hunan, Peoples R China.
语种:
英文
关键词:
Double-layer model;Incident congestion;Ramp metering;Urban freeway;Aggressive behavior
期刊:
Arabian Journal for Science and Engineering
ISSN:
2193-567X
年:
2017
卷:
42
期:
3
页码:
973-984
基金类别:
Ministry of Communication PR China [2011-319-825-460]; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [51308074, 51278066]; Foundation of Hunan Province Key Laboratory of Smart Grids Operation and Control
机构署名:
本校为第一且通讯机构
院系归属:
交通运输工程学院
电气与信息工程学院
摘要:
In order to ensure that traffic capacity is stable, and avoid incident congestion is anabatic, a double-layer ramp-metering model is proposed in this paper to control the traffic flow at each on-ramp, nearby incident congestion. The function of the lower model is to recognize where the incident congestion exists, based on an adaptive neural network, whose inputs are traffic flow, velocity and density. The outputs of the lower model are the section number where the congestion occurs and the ramp number which should be controlled. If there is congestion, the upper model would be activated. The f...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com