版权说明 操作指南
首页 > 成果 > 详情

The image super-resolution network based on dual-branch feature interaction attention mechanism

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Hu, Shigang;Wu, Darong;Wang, Jianxin;Huang, Shijun
通讯作者:
Wang, JX
作者机构:
[Huang, Shijun; Hu, Shigang; Wu, Darong] Hunan Univ Sci & Technol, Sch Informat & Elect Engn, Xiangtan 411201, Peoples R China.
[Wang, Jianxin] Changsha Univ Sci & Technol, Sch Comp & Commun Engn, Changsha 410114, Peoples R China.
通讯机构:
[Wang, JX ] C
Changsha Univ Sci & Technol, Sch Comp & Commun Engn, Changsha 410114, Peoples R China.
语种:
英文
关键词:
Super-resolution;Dual-branch feature interaction attention;Adaptive large kernel enhancement;Overlapping cross-attention modules
期刊:
VISUAL COMPUTER
ISSN:
0178-2789
年:
2025
页码:
1-14
基金类别:
This work was supported by Open Fund of Key Laboratory of Road Structure and Material of Ministry of Transport (Changsha University of Science & Technology) (Grant No. kfj230401) and the Scientific Research Fund of Hunan Provincial Education Department (Grant No. 24B0328).
机构署名:
本校为通讯机构
院系归属:
计算机与通信工程学院
摘要:
Recently, deep convolutional neural networks (CNNs) have achieved excellent performance on image super-resolution (SR). However, the majority of the deep CNN-based super-resolution models struggle to capture global context due to their limited receptive fields and do not fully utilize intermediate features, which limits their performance and application. To address this issue, we propose an image super-resolution reconstruction network (DBFA) based on dual-branch feature interaction attention mechanism, aimed at capturing global context and multi-scale local features. DBFA uses the Transformer...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com