版权说明 操作指南
首页 > 成果 > 详情

Improved Density Clustering for Spacing Measurement of Irregular Rebar Mesh from 3D Point Clouds

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Fengling Li*;Zezhou Long;Hongwei Hu;Kai Gao
通讯作者:
Fengling Li
作者机构:
[Hongwei Hu] Professor, College of Automobile and Mechanical Engineering, Changsha Univ. of Science and Technology, Changsha 410114, China
[Zezhou Long] Postgraduate Student, College of Automobile and Mechanical Engineering, Changsha Univ. of Science and Technology, Changsha 410114, China
Associate Professor, College of Mechanical and Vehicle Engineering, Changsha Univ. of Science and Technology, Changsha 410114, China
[Kai Gao] Associate Professor, College of Automobile and Mechanical Engineering, Changsha Univ. of Science and Technology, Changsha 410114, China
[Fengling Li] Associate Professor, College of Mechanical and Vehicle Engineering, Changsha Univ. of Science and Technology, Changsha 410114, China
通讯机构:
[Fengling Li] A
Associate Professor, College of Mechanical and Vehicle Engineering, Changsha Univ. of Science and Technology, Changsha 410114, China
语种:
英文
期刊:
JOURNAL OF SURVEYING ENGINEERING
ISSN:
0733-9453
年:
2025
卷:
151
期:
3
页码:
04025005
机构署名:
本校为第一且通讯机构
院系归属:
汽车与机械工程学院
摘要:
Proper spacing of rebar mesh is essential for structural integrity and safety, but measuring the spacing performance in three-dimensional (3D) space can be complicated. Existing spacing verification either relies on well-annotated data or encounters challenges when dealing with obscured point clouds. To address these challenges, we propose a novel approach using a projection clustering algorithm. Initially, we project the 3D point cloud onto a frontal view and perform density peak clustering in two directions, enabling accurate recognition of vertical and horizontal boundaries. Then, we iterat...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com