版权说明 操作指南
首页 > 成果 > 详情

A new combination model for short-term wind power prediction

认领
导出
下载 Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文、会议论文
作者:
Yin, Zizhong*;Chen, Zhong;Yin, Dongyang;Li, Qi
通讯作者:
Yin, Zizhong
作者机构:
[Yin, Zizhong; Chen, Zhong] Changsha Univ Sci & Technol, Coll Elect & Informat Engn, Changsha 410114, Peoples R China.
[Yin, Dongyang] State Grid Hunan Elect Power Co, Huitong Cty Power Supply Co Ltd, Huitong 418300, Peoples R China.
[Li, Qi] State Grid Bengbu Elect Power Supply Co, Elect Power Econ & Tech Res Inst, Bengbu 233000, Peoples R China.
通讯机构:
[Yin, Zizhong] C
Changsha Univ Sci & Technol, Coll Elect & Informat Engn, Changsha 410114, Peoples R China.
语种:
英文
关键词:
Wind power prediction;Principal component analysis;Elman neural network;Rough set theory;Power conversion
期刊:
Proceedings of the 5th IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies, DRPT 2015
年:
2015
页码:
1869-1873
会议名称:
2015 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT)
会议论文集名称:
2015 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT)
会议时间:
November 2015
会议地点:
Changsha, China
会议主办单位:
[Yin, Zizhong;Chen, Zhong] Changsha Univ Sci & Technol, Coll Elect & Informat Engn, Changsha 410114, Peoples R China.^[Yin, Dongyang] State Grid Hunan Elect Power Co, Huitong Cty Power Supply Co Ltd, Huitong 418300, Peoples R China.^[Li, Qi] State Grid Bengbu Elect Power Supply Co, Elect Power Econ & Tech Res Inst, Bengbu 233000, Peoples R China.
会议赞助商:
Sch Elect Information Engn, Changsha Univ Sci Technol, IEEE Power & Energy soc, Inst Engn Technol, NSFC, SEE
出版地:
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者:
IEEE
机构署名:
本校为第一且通讯机构
院系归属:
电气与信息工程学院
摘要:
Short-term wind power prediction is important to the dispatch and operation of power system. A prediction model based on the rough set, principal component analysis (PCA) and Elman neural network (ElmanNN) is constructed for short-term wind speed forecasting to improve the prediction accuracy of short-term wind power. The wind speed prediction model is established by using ElmanNN, and PCA is used to extract the feature of wind speed data, which optimizes the inputs of ElmanNN. Furthermore, excitation function and the structures of network are improved to search for the optimum solution to fun...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com