版权说明 操作指南
首页 > 成果 > 详情

Anomaly detection of photovoltaic power generation based on quantile regression recurrent neural network

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Chengcheng Yi;Yu Peng;Sheng Su;Bin Li;Xiaoqian Wang;...
通讯作者:
Yu Peng<&wdkj&>Sheng Su
作者机构:
[Chengcheng Yi; Yu Peng; Sheng Su; Bin Li; Xiaoqian Wang; Wenqing Zhou; Hongming Yang] The College of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
[Xin Guo] The School of Intelligent Manufacturing, Hunan First Normal University, Changsha, Hunan 410205, China
[Wenchuan Meng] Energy Development Research Institute, China Southern Power Grid, Guangzhou, 510663, China
通讯机构:
[Yu Peng; Sheng Su] T
The College of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
语种:
英文
关键词:
Photovoltaic power generation;Power outlier detection;Sunny day screening;Quantile regression recurrent neural network;Power output correlation
期刊:
Electric Power Systems Research
ISSN:
0378-7796
年:
2025
卷:
238
页码:
111132
基金类别:
National Natural Science Foundation of China Hunan Provincial Natural Science Foundation
机构署名:
本校为第一且通讯机构
摘要:
Distributed photovoltaic (PV) power generation systems are widely spread. Moreover, due to the randomness of meteorological conditions and the complexity of installation environments, it is difficult to eliminate the interference of factors such as meteorological fluctuations in the monitoring of abnormal states of PV equipment. Based on this, this paper proposes a PV power generation anomaly detection method based on Quantile Regression Recurrent Neural Network (QRRNN). First, the characteristics of solar irradiance on clear days are analyzed, and the clear day masking method is used to elimi...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com