版权说明 操作指南
首页 > 成果 > 详情

BCM-YOLO: An improved YOLOv8-based lightweight porcelain insulator defect detection model

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Bin, Feng;Hou, Fan;Chen, Da;Qiu, Kang;Lu, Xiaofeng;...
通讯作者:
Sun, QQ
作者机构:
[Bin, Feng; Qiu, Kang; Hou, Fan; Lu, Xiaofeng] Changsha Univ Sci & Technol, Sch Phys & Elect Sci, Changsha, Peoples R China.
[Chen, Da] State Grid Tianjin Elect Power Co, Binhai Power Supply Branch, Tianjin, Peoples R China.
[Sun, Qiuqin] Hunan Univ, Coll Elect & Informat Engn, Changsha, Peoples R China.
通讯机构:
[Sun, QQ ] H
Hunan Univ, Coll Elect & Informat Engn, Changsha, Peoples R China.
语种:
英文
期刊:
High Voltage
ISSN:
2397-7264
年:
2025
基金类别:
National Natural Science Foundation of China; Scientific Research Fund of Hunan Provincial Education Department [21C0169]; Postgraduate Scientific Research Innovation Project of Hunan Province [CX20210825]; [52307157]
机构署名:
本校为第一机构
院系归属:
物理与电子科学学院
摘要:
Porcelain insulator is an important component of power transmission systems, and its condition detection is essential to ensure safe operation of the power grid. Nevertheless, it is difficult for existing detection models to effectively solve the contradiction between detection accuracy and resource consumption. To address this issue, a high-precision lightweight insulator defect detection model (BCM-YOLO) based on an improved YOLOv8 is proposed. Firstly, bidirectional feature pyramid network (BiFPN), with a simplified bidirectional information flow mechanism, is employed to replace the path a...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com