版权说明 操作指南
首页 > 成果 > 详情

Cores and Independence Numbers of Grassmann Graphs

认领
导出
Link by 万方学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Huang, Li-Ping*;Lv, Benjian
通讯作者:
Huang, Li-Ping
作者机构:
[Huang, Li-Ping] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410004, Hunan, Peoples R China.
[Lv, Benjian] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China.
[Lv, Benjian] Beijing Normal Univ, Lab Math Com Syst, Beijing 100875, Peoples R China.
通讯机构:
[Huang, Li-Ping] C
Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410004, Hunan, Peoples R China.
语种:
英文
关键词:
Grassmann graph;Core;Independence number;Constant dimension code
期刊:
Graphs and Combinatorics
ISSN:
0911-0119
年:
2017
卷:
33
期:
6
页码:
1607-1620
基金类别:
Acknowledgements The authors are grateful to the referees for many useful comments and suggestions. Projects 11371072, 11501036 supported by NSFC. Supported by the Fundamental Research Funds for the Central University of China, Youth Scholar Program of Beijing Normal University (2014NT31) and China Postdoctoral Science Foundation (2015M570958).
机构署名:
本校为第一且通讯机构
院系归属:
数学与统计学院
摘要:
A graph G is a core if every endomorphism of G is an automorphism. Let J(q) (n, m) be the Grassmann graph with parameters q, m, n. We prove that many Grassmann graphs are cores, and both J(2)(2k, 2) and J(q) (2k, 2) are not cores. We also obtain the independence number of Jq (n, 2). In further to study cores and coding theory, it is important to estimate the upper bound of the independence number of J(q) (n, m). Using a vertex-transitive subgraph of J(q) (n, m), we obtain upper bounds on the independence number of J(q) (n, m), which are also an improvement of bounds for the...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com