版权说明 操作指南
首页 > 成果 > 详情

Sharp bounds for Neuman means in terms of two-parameter contraharmonic and arithmetic mean

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Qian, Wei-Mao;He, Zai-Yin;Zhang, Hong-Wei;Chu, Yu-Ming*
通讯作者:
Chu, Yu-Ming
作者机构:
[Qian, Wei-Mao] Huzhou Vocat & Tech Coll, Sch Continuing Educ, Huzhou, Peoples R China.
[He, Zai-Yin] Hunan Univ, Coll Math & Econometr, Changsha, Hunan, Peoples R China.
[Zhang, Hong-Wei] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha, Hunan, Peoples R China.
[Chu, Yu-Ming] Huzhou Univ, Dept Math, Huzhou, Peoples R China.
通讯机构:
[Chu, Yu-Ming] H
Huzhou Univ, Dept Math, Huzhou, Peoples R China.
语种:
英文
关键词:
Arithmetic mean;Quadratic mean;Contraharmonic mean;Schwab–Borchardt mean;Neuman mean;Two-parameter contraharmonic and arithmetic mean
期刊:
JOURNAL OF INEQUALITIES AND APPLICATIONS
ISSN:
1025-5834
年:
2019
卷:
2019
期:
1
页码:
1-13
基金类别:
The work was supported by the Natural Science Foundation of China (Grant Nos. 61673169, 11301127, 11701176, 11626101, 11601485) and the Natural Science Foundation of Huzhou City (Grant No. 2018YZ07).
机构署名:
本校为其他机构
院系归属:
数学与统计学院
摘要:
In the article, we prove that λ1=1/2+[(2+log(1+2))/2]1/ν−1/2, μ1=1/2+6ν/(12ν), λ2=1/2+[(π+2)/4]1/ν−1/2 and μ2=1/2+3ν/(6ν) are the best possible parameters on the interval [1 / 2 , 1] such that the double inequalities Cν[λ1x+(1−λ1)y,λ1y+(1−λ1)x]A1−ν(x,y)<RQA(x,y)<Cν[μ1x+(1−μ1)y,μ1y+(1−μ1)x]A1−ν(x,y),Cν[λ2x+(1−λ2)y,λ2y+(1−λ2)x]A1−ν(x,y)<RAQ(x,y)<Cν[μ2x+(1−μ2)y,μ2y+(1−μ2)x]A1−ν(x,y) hold for all x, y> 0 with x≠ y and ν∈ [1 / 2 , ∞) , where A(x, y) is the arithmetic mean, C(x, y) i...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com