版权说明 操作指南
首页 > 成果 > 详情

Deep Learning Approach for Predicting Stress Fields in Composites With Diverse Fiber Volume Fractions

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Yao, Qiuze;Peng, Xiang;Jia, Weiqiang;Liu, Xin;Li, Jiquan;...
通讯作者:
Peng, X;Jia, WQ
作者机构:
[Yao, Qiuze; Peng, Xiang; Jiang, Shaofei; Li, Jiquan] Zhejiang Univ Technol, Coll Mech Engn, Hangzhou, Peoples R China.
[Jia, Weiqiang] Zhejiang Lab, Hangzhou, Peoples R China.
[Liu, Xin] Changsha Univ Sci & Technol, Hunan Prov Key Lab Safety Design & Reliabil Techno, Changsha, Peoples R China.
通讯机构:
[Peng, X ; Jia, WQ ] Z
Zhejiang Univ Technol, Coll Mech Engn, Hangzhou, Peoples R China.
Zhejiang Lab, Hangzhou, Peoples R China.
语种:
英文
关键词:
composite;deep learning;finite element method;local stress;representative volume element
期刊:
Polymer Composites
ISSN:
0272-8397
年:
2025
基金类别:
This work was supported by the National Natural Science Foundation of China (grant numbers 51875525, 52275235), the Zhejiang Provincial Natural Science Foundation of China (grant numbers LY21E050008, LHZ22F020001), and Fundamental Research Funds for the Provincial Universities of Zhejiang (RF-B2024004).
机构署名:
本校为其他机构
院系归属:
汽车与机械工程学院
摘要:
Predicting the full-field stress distribution has important significance in analyzing mechanical characteristics of composite materials. Numerical calculations of stress field distribution using finite element analysis (FEA) can call for significant computational effort for microscale geometries. To address this challenge, this paper demonstrates a deep learning (DL) framework for predicting local stress distributions in fiber-reinforced composites with diverse fiber volume fractions. An adaptive generation algorithm of representative volume element (RVE) microstructures is developed for const...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com