版权说明 操作指南
首页 > 成果 > 详情

Two descent hybrid conjugate gradient methods for optimization

认领
导出
下载 Link by 万方学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zhang, Li;Zhou, Weijun*
通讯作者:
Zhou, Weijun
作者机构:
[Zhang, Li; Zhou, Weijun] Changsha Univ Sci & Technol, Coll Math & Computat Sci, Changsha 410076, Peoples R China.
通讯机构:
[Zhou, Weijun] C
Changsha Univ Sci & Technol, Coll Math & Computat Sci, Changsha 410076, Peoples R China.
语种:
英文
关键词:
Conjugate gradient method;Descent direction;Global convergence
期刊:
Journal of Computational and Applied Mathematics
ISSN:
0377-0427
年:
2008
卷:
216
期:
1
页码:
251-264
基金类别:
Supported by the 973 project (2004CB719402) and the NSF foundation (10471036) of China.
机构署名:
本校为第一且通讯机构
院系归属:
数学与统计学院
摘要:
In this paper, we propose two new hybrid nonlinear conjugate gradient methods, which produce sufficient descent search direction at every iteration. This property depends neither on the line search used nor on the convexity of the objective function. Under suitable conditions, we prove that the proposed methods converge globally for general nonconvex functions. The numerical results show that both hybrid methods are efficient for the given test problems from t...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com