版权说明 操作指南
首页 > 成果 > 详情

Structural damage diagnosis of a cable-stayed bridge based on VGG-19 networks and Markov transition field: numerical and experimental study

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Lu, Naiwei;Liu, Zengyifan;Cui, Jian;Hu, Lian;Xiao, Xiangyuan;...
通讯作者:
Cui, J
作者机构:
[Liu, Zengyifan; Hu, Lian; Lu, Naiwei; Cui, Jian; Liu, Yiru; Xiao, Xiangyuan] Changsha Univ Sci & Technol, Sch Civil Engn, Changsha 410114, Hunan, Peoples R China.
通讯机构:
[Cui, J ] C
Changsha Univ Sci & Technol, Sch Civil Engn, Changsha 410114, Hunan, Peoples R China.
语种:
英文
关键词:
structural damage diagnosis;convolutional neural network;VGG-19 network;Markov transition field;transfer learning
期刊:
Smart Materials and Structures
ISSN:
0964-1726
年:
2025
卷:
34
期:
2
页码:
025006
基金类别:
Research Foundation of Education Bureau of Human Province; National Nature Science Foundation of China [52178108, 52478128]; Natural Science Foundation of Hunan Province [2023JJ50180, 2024JJ5033]; Science and Technology Innovation Program of Hunan Province [2022RC1181]; Shenzhen Science and technology planning Project [GJGJZD20220517141800001]; [23B0575]
机构署名:
本校为第一且通讯机构
院系归属:
土木工程学院
摘要:
Traditional physical-driven modal methods are inappropriate for damage diagnosis of long-span flexible structures with complex mechanical behaviour. This study develops a deep Convolutional Neural Network-based damage diagnosis method for in-service bridges by using dynamic responses under moving loads. The dynamic responses were collected from the critical points on the girders of a cable-stayed bridge specimen under vehicle loading. These collected data was transformed into images based on Gramian Angular Field and Markov Transition Field (MTF). A deep learning algorithm based on VGG-19 was ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com