版权说明 操作指南
首页 > 成果 > 详情

Design of Self-Optimizing Polynomial Neural Networks with Temporal Feature Enhancement for Time Series Classification

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Tang, Yuqi;Xu, Zhilei;Huang, Wei
通讯作者:
Huang, W
作者机构:
[Huang, Wei; Tang, Yuqi; Xu, Zhilei] Beijing Inst Technol, Sch Cyberspace Sci & Technol, Beijing 100081, Peoples R China.
[Tang, Yuqi] Changsha Univ Sci & Technol, Sch Elect & Informat Engn, Changsha 410114, Peoples R China.
通讯机构:
[Huang, W ] B
Beijing Inst Technol, Sch Cyberspace Sci & Technol, Beijing 100081, Peoples R China.
语种:
英文
关键词:
polynomial neural network (PNN);temporal feature extraction;sub-dataset generation;least squares estimation (LSE);classification rate
期刊:
Electronics
ISSN:
2079-9292
年:
2025
卷:
14
期:
3
基金类别:
National Major Scientific Instruments [62227805]; National Major Scientific Instruments and Equipments Development Project of National Natural Science Foundation of China
机构署名:
本校为其他机构
院系归属:
电气与信息工程学院
摘要:
Time series classification is a significant and complex issue in data mining, it is prevalent across various fields and holds substantial research value. However, enhancing the classification rate of time series data remains a formidable challenge. Traditional time series classification methods often face difficulties related to insufficient feature extraction or excessive model complexity. In this study, we propose a self-optimizing polynomial neural network with a temporal feature enhancement, which is referred to as OPNN-T. Existing classifiers based on polynomial neural networks (PNNs) str...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com