版权说明 操作指南
首页 > 成果 > 详情

A framework of granular-ball generation for classification via granularity tuning

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Pan, Jialong;Lang, Guangming;Xiao, Qimei;Yang, Tian
通讯作者:
Lang, GM
作者机构:
[Xiao, Qimei; Lang, Guangming; Pan, Jialong] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410114, Hunan, Peoples R China.
[Yang, Tian] Hunan Normal Univ, Coll Informat Sci & Engn, Changsha 410081, Hunan, Peoples R China.
通讯机构:
[Lang, GM ] C
Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410114, Hunan, Peoples R China.
语种:
英文
关键词:
Classification;Granular computing;Granular-ball computing;Label noise
期刊:
Applied Intelligence
ISSN:
0924-669X
年:
2025
卷:
55
期:
1
页码:
1-23
基金类别:
National Natural Science Foundation of China [62076040, 12471431]; National Natural Science Foundation of China [22A0233]; Scientific Research Fund of Hunan Provincial Education Department [2018TP1018]; Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing [2018MMAEZD10]; Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering; Natural Sciences and Engineering Research Council of Canada
机构署名:
本校为第一且通讯机构
院系归属:
数学与统计学院
摘要:
In Granular-ball Computing (GbC), the radius of a granular-ball is usually defined as the maximum or average distance from all enclosed objects to the center. However, both methods face challenges in building a high-quality family of granular-balls for enhanced classification performance. The former often results in overlaps between heterogeneous granular-balls, and the latter may fail to cover all objects. This paper presents an effective way to define the radius with adaptive granularity tuning and explores the subsequent application of the constructed granular-balls in classifications. Spec...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com