版权说明 操作指南
首页 > 成果 > 详情

A new discrete-time denoising complex neurodynamics applied to dynamic complex generalized inverse matrices

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Xiang, Qiuhong;Gong, Hongfang;Hua, Cheng
通讯作者:
Gong, HF
作者机构:
[Gong, HF; Gong, Hongfang; Xiang, Qiuhong] Changsha Univ Sci & Technol, Coll Math & Stat, Changsha 410114, Hunan, Peoples R China.
[Hua, Cheng] Jishou Univ, Coll Comp Sci & Engn, Jishou 416000, Hunan, Peoples R China.
通讯机构:
[Gong, HF ] C
Changsha Univ Sci & Technol, Coll Math & Stat, Changsha 410114, Hunan, Peoples R China.
语种:
英文
关键词:
Euler forward difference rule;DTDCN;Dynamic;Complex generalized inverse
期刊:
JOURNAL OF SUPERCOMPUTING
ISSN:
0920-8542
年:
2025
卷:
81
期:
1
机构署名:
本校为第一且通讯机构
院系归属:
数学与统计学院
摘要:
This study introduces a novel discrete-time denoising complex neurodynamics model (referred to as the DTDCN model), which focuses on analyzing and discussing the computation of online dynamic complex generalized inverse matrices under various noisy environments. The proposed DTDCN method has inherent denoising capabilities and high accuracy in online computation. Theoretical analysis has established that the DTDCN model possesses the characteristics of 0-stability, consistency, and convergence. Additionally, experimental results have further reinforced the DTDCN model's efficacy and superiorit...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com