版权说明 操作指南
首页 > 成果 > 详情

Localized meshless methods based on polynomial basis functions for solving axisymmetric equations

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Chang, Wanru;Chen, C. S.;Liu, Xiao-Yan*;Li, J.
通讯作者:
Liu, Xiao-Yan
作者机构:
[Chang, Wanru] Zhejiang Univ, Sch Math Sci, Hangzhou, Zhejiang, Peoples R China.
[Chen, C. S.] Univ Southern Mississippi, Dept Math, Hattiesburg, MS 39406 USA.
[Liu, Xiao-Yan] Taiyuan Univ Technol, Coll Data Sci, Taiyuan, Peoples R China.
[Li, J.] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha, Peoples R China.
通讯机构:
[Liu, Xiao-Yan] T
Taiyuan Univ Technol, Coll Data Sci, Taiyuan, Peoples R China.
语种:
英文
关键词:
Functions;Numerical methods;Axisymmetric equations;Axisymmetric problems;Chebyshev polynomials;Low-order polynomials;Method of particular solution;Particular solution;Polynomial basis functions;Preconditioning treatment;Polynomials
期刊:
Mathematics and Computers in Simulation
ISSN:
0378-4754
年:
2020
卷:
177
页码:
487-499
基金类别:
The third author acknowledges the support of the National Natural Science Foundation of China (Grant No. 11771321 ). The fourth author thanks for the support of Hunan Provincial Natural Science Foundation of China (Grant No. 2018JJ3519 ) and Scientific Research Project of Hunan Provincial Office of Education (Grant no. 17B003 ). The third author acknowledges the support of the National Natural Science Foundation of China (Grant No. 11771321). The fourth author thanks for the support of Hunan Provincial Natural Science Foundation of China (Grant No. 2018JJ3519) and Scientific Research Project of Hunan Provincial Office of Education (Grant no. 17B003).
机构署名:
本校为其他机构
院系归属:
数学与统计学院
摘要:
In this paper, two localized meshless methods based on polynomial basis functions are utilized to solve axisymmetric problems. In the first approach, we applied the localized method of particular solutions (LMPS) and the closed-form particular solution to simplify the two-stage approach using Chebyshev polynomial as the basis functions for solving axisymmetric problems. We also propose the modified local Pascal polynomial method (MLPM) to compare the results with LMPS. Since only the low order polynomial basis functions are used, no preconditio...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com