版权说明 操作指南
首页 > 成果 > 详情

Bursting Firings in Memristive Hopffeld Neural Network with Image Encryption and Hardware Implementation

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Fei Yu;Shaoqi He;Wei Yao;Shuo Cai;Quan Xu
作者机构:
[Quan Xu] School of Microelectronics and Control Engineering, Changzhou University, Changzhou, China
[Fei Yu; Shaoqi He; Wei Yao; Shuo Cai] School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha, China
语种:
英文
期刊:
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS
ISSN:
0278-0070
年:
2025
页码:
1-1
基金类别:
10.13039/501100004735-Natural Science Foundation of Hunan Province (Grant Number: 2025JJ50368) Scientific Research Fund of Hunan Provincial Education Department (Grant Number: 24A0248)
机构署名:
本校为其他机构
院系归属:
物理与电子科学学院
摘要:
By integrating memristors into a Hopfield neural network (HNN), a diverse range of dynamical behavior can be generated, which has significant implications for modeling and biomimetic applications of artificial neurons. However, research on the firing dynamics of HNNs remains relatively limited. In response, a memristive tri-neurons Hopfield neural network (MTN-HNN) was constructed, with the synapse of the second neuron replaced by the proposed memristor. A theoretical and experimental investigation of the dynamics of this neural network was conducted using general analytical tools, such as pha...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com