版权说明 操作指南
首页 > 成果 > 详情

Improving lightweight state-of-charge estimation of lithium-ion battery using residual network and gated recurrent neural network

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Yinglong Zhao;Yong Li*;Yijia Cao;Yixiao Wang
通讯作者:
Yong Li
作者机构:
College of Electrical and Information Engineering, Hunan University, Changsha, 410082, China
Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, China
[Yijia Cao] School of Electrical & Information Engineering, Changsha University of Science and Technology, Changsha, 410114, China
[Yixiao Wang] School of Automation, Central South University, Changsha, 410082, China
[Yinglong Zhao; Yong Li] College of Electrical and Information Engineering, Hunan University, Changsha, 410082, China<&wdkj&>Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, China
通讯机构:
[Yong Li] C
College of Electrical and Information Engineering, Hunan University, Changsha, 410082, China<&wdkj&>Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, China
语种:
英文
期刊:
Journal of Energy Storage
ISSN:
2352-152X
年:
2025
卷:
116
页码:
115934
机构署名:
本校为其他机构
院系归属:
电气与信息工程学院
摘要:
Lithium-ion batteries are now widely used as energy storage units in electric vehicles. Achieving high accuracy in state of charge (SOC) estimation in the battery management system (BMS) is critical for safe operation of electric vehicles. However, accurate SOC estimation remains a challenging task due to the complex dynamics of batteries and the wide range of ambient temperature. Here we propose a new method called ResNet-GRNN for accurate SOC estimation. Our approach combines a Residual network (ResNet) and a gated recurrent neural network (GRNN). Compared to traditional GRNNs, the proposed ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com