版权说明 操作指南
首页 > 成果 > 详情

Exponential stability of inertial neural networks involving proportional delays and non-reduced order method

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Huang, Chuangxia*
通讯作者:
Huang, Chuangxia
作者机构:
[Huang, Chuangxia] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410114, Hunan, Peoples R China
[Huang, Chuangxia] Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha, Hunan, Peoples R China
通讯机构:
[Huang, Chuangxia] C
Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410114, Hunan, Peoples R China.
语种:
英文
关键词:
Artificial intelligence;Software engineering;Differential inequalities;Lyapunov function method;Non-reduced orders;proportional de-lays;Reduced-order methods;Lyapunov functions
期刊:
Journal of Experimental & Theoretical Artificial Intelligence
ISSN:
0952-813X
年:
2020
卷:
32
期:
1
页码:
133-146
基金类别:
This work was supported by the National Natural Science Foundation of China (Nos. 11861037, 71471020, 51839002), the Hunan Provincial Natural Science Foundation of China (No. 2016JJ1001), and the Scientific Research Fund of Hunan Provincial Education Department (No. 15A003). The author would like to express the sincere appreciation to the editors and anonymous reviewers for their constructive comments and suggestions which helped to improve the present paper.
机构署名:
本校为第一且通讯机构
院系归属:
数学与统计学院
摘要:
This paper studies a class of inertial neural networks involving proportional delays. Without adopting reduced order method, by combining Lyapunov function method with differential inequality approach, some novel assertions are gained to validate the global generalised exponential stability of the addressed model, which are new and complement some previous works. In the end, some examples with their numerical simulations are carried out ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com