版权说明 操作指南
首页 > 成果 > 详情

Fully-geometric mesh one-leg methods for the generalized pantograph equation: Approximating Lyapunov functional and asymptotic contractivity

认领
导出
下载 Link by 万方学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Wang, Wansheng*
通讯作者:
Wang, Wansheng
作者机构:
[Wang, Wansheng] Changsha Univ Sci & Technol, Sch Math & Stat, Yuntang Campus, Changsha 410114, Hunan, Peoples R China.
通讯机构:
[Wang, Wansheng] C
Changsha Univ Sci & Technol, Sch Math & Stat, Yuntang Campus, Changsha 410114, Hunan, Peoples R China.
语种:
英文
关键词:
Neutral functional differential equation;Generalized pantograph equation;Fully-geometric mesh one-leg methods;Variable stepsizes one-leg methods;Asymptotic contractivity;Approximating Lyapunov functional;Stability
期刊:
Applied Numerical Mathematics
ISSN:
0168-9274
年:
2017
卷:
117
页码:
50-68
基金类别:
Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [11371074]; Hunan Provincial Natural Science Foundation of ChinaNatural Science Foundation of Hunan Province [13JJ10201]; Research Foundation of Education Bureau of Hunan Province, China [13A108]
机构署名:
本校为第一且通讯机构
院系归属:
数学与统计学院
摘要:
Motivated by recent stability results on one-step methods, especially Runge-Kutta methods, for the generalized pantograph equation (GPE), in this paper we study the stability of one-leg multistep methods for these equations since the one-leg methods have less computational cost than Runge-Kutta methods. To do this, a new stability concept, Gq((q) over bar)-stability defined for variable stepsizes one-leg methods with the stepsize ratio q which is an extension of G-stability defined for constant stepsizes one-leg methods, is introduced. The Lyapunov functional of linear system is obtained and n...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com