版权说明 操作指南
首页 > 成果 > 详情

On products of consecutive arithmetic progressions

认领
导出
下载 Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zhang, Yong;Cai, Tianxin*
通讯作者:
Cai, Tianxin
作者机构:
[Zhang, Yong] Changsha Univ Sci & Technol, Coll Math & Comp Sci, Changsha 410114, Hunan, Peoples R China.
[Cai, Tianxin; Zhang, Yong] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China.
通讯机构:
[Cai, Tianxin] Z
Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China.
语种:
英文
关键词:
Consecutive arithmetic progression;Diophantine equation;Elliptic curve;Pell's equation;Primary;Secondary
期刊:
Journal of Number Theory
ISSN:
0022-314X
年:
2015
卷:
147
页码:
287-299
基金类别:
This research was supported by China National Science Foundation Grant (No. 11351002 ), Natural Science Foundation of Zhejiang Province (No. LQ13A010012 ), and Zhejiang Projects for Postdoctoral Research Preferred Funds (No. Bsh1201021 ).
机构署名:
本校为第一机构
院系归属:
数学与统计学院
摘要:
In this paper, first, we show the Diophantine equation. x(x+b)y(y+b)=z(z+b) has infinitely many nontrivial positive integer solutions for b≥. 3. Second, we prove the Diophantine equation. (x-b)x(x+b)(y-b)y(y+b)=(z-b)z(z+b) has infinitely many nontrivial positive integer solutions for b=. 1, and the set of rational solutions of it is dense in the set of real solutions for b≥. 1. Third, we get infinitely many nontrivial positive integer solutions of the Diophantine equation. (x-b)x(x+b)(y-b)y(y+b)=z2 for even number b≥. 2. At last...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com