版权说明 操作指南
首页 > 成果 > 详情

On products of consecutive arithmetic progressions. II

认领
导出
下载 Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zhang, Y.*
通讯作者:
Zhang, Y.
作者机构:
[Zhang, Y.] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410114, Hunan, Peoples R China.
[Zhang, Y.] Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Hunan, Peoples R China.
通讯机构:
[Zhang, Y.] C
[Zhang, Y.] H
Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410114, Hunan, Peoples R China.
Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Hunan, Peoples R China.
语种:
英文
关键词:
Diophantine equation;consecutive arithmetic progression;Pellian equation
期刊:
Acta Mathematica Hungarica
ISSN:
0236-5294
年:
2018
卷:
156
期:
1
页码:
240-254
基金类别:
This research was supported by the National Natural Science Foundation of China No. 11501052). Key words and phrases: Diophantine equation, consecutive arithmetic progression, equation. Mathematics Subject Classification: primary 11D25, secondary 11D72.
机构署名:
本校为第一且通讯机构
院系归属:
数学与统计学院
摘要:
Let $${f(x, k, d) = x(x + d)\cdots(x + (k - 1)d)}$$ be a polynomial with $${k \geq 2}$$ , $${d \geq 1}$$ . We consider the Diophantine equation $${\prod_{i = 1}^{r} f(x_i, k_i, d) = y^2}$$ , which is inspired by a question of Erdős and Graham [4, p. 67]. Using the theory of Pellian equation, we give infinitely many (nontrivial) positive integer solutions of the above Diophantine equation for some cases.

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com