版权说明 操作指南
首页 > 成果 > 详情

Ultra-Short-Term Forecasting of Photovoltaic Power Generation through Spatiotemporal Time-Series Image Conversion

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Md Tanjid Hossain;Yanfu Jiang;Xingyu Shi;Xutao Han;Zhiyi Li*
通讯作者:
Zhiyi Li
作者机构:
[Yanfu Jiang] Faculty of Engineering, Monash University, Clayton, Victoria, Australia
[Md Tanjid Hossain; Xutao Han; Zhiyi Li] Department of Electrical Engineering, Zhejiang University, Hangzhou, China
[Xingyu Shi] Department of Electrical Engineering, Changsha University of Science and Technology, Changsha, China
通讯机构:
[Zhiyi Li] D
Department of Electrical Engineering, Zhejiang University, Hangzhou, China
语种:
英文
期刊:
IET Renewable Power Generation
ISSN:
1752-1416
年:
2025
卷:
19
期:
1
页码:
e70119
基金类别:
: This research was supported by the National Natural Science Foundation of China (52477132).
机构署名:
本校为其他机构
院系归属:
电气与信息工程学院
摘要:
Seasonal fluctuations and the intermittent nature of photovoltaic (PV) generation create significant challenges for accurate short-term forecasting. This study presents Next Frame Gramian Angular field U-Net (NFGUN), a hybrid deep learning forecasting framework that stands apart from conventional methods by transforming 1D PV time-series data into 2D Gramian Angular Summation Field (GASF) images. Unlike models that rely on direct regression or sky imagery, NFGUN forecasts the next GASF frame using a deep architecture and reconstructs it back into time-series form, effectively capturing nonline...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com