版权说明 操作指南
首页 > 成果 > 详情

Study on mesostructure evolution behavior of asphalt mixture compaction process based on deep learning image processing

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zhong, Cheng;Qian, Guoping;Gong, Xiangbing;Yu, Huanan;Jun, Cai;...
通讯作者:
Gong, XB
作者机构:
[Gong, Xiangbing; Zhong, Yixiong; Yu, Huanan; Jun, Cai; Zhong, Cheng; Gong, XB; Qian, Guoping; Ma, Jintao; Gu, Hongshuai] Changsha Univ Sci & Technol, Sch Traff & Transportat Engn, Changsha 410114, Peoples R China.
[Gong, Xiangbing; Yu, Huanan; Jun, Cai; Qian, Guoping] Changsha Univ Sci & Technol, Natl Engn Res Ctr Highway Maintenance Technol, Changsha 410114, Peoples R China.
通讯机构:
[Gong, XB ] C
Changsha Univ Sci & Technol, Sch Traff & Transportat Engn, Changsha 410114, Peoples R China.
语种:
英文
关键词:
Asphalt mixture;Convolutional neural network;Ratory compaction;Mesostructure;CT scanning
期刊:
Construction and Building Materials
ISSN:
0950-0618
年:
2025
卷:
458
页码:
139650
基金类别:
National Natural Science Foundation of China [52378435, 52227815, 52178414]; Science and Technology Innovation Program of Hunan Province [2023RC3146]; Natural Science Foundation of Hunan Province [2022JJ40474]; Education Department Foundation of Hunan Provincial [23B0323]
机构署名:
本校为第一且通讯机构
院系归属:
交通运输工程学院
摘要:
The mesostructure of the asphalt mixture, being intricate and varied, poses a significant challenge in accurately analyzing its distribution throughout various stages of compaction. CT scanning was employed to obtain digital images of PAC-13 asphalt mixture, convolutional neural networks were utilized for multi-component segmentation and three-dimensional reconstruction, with the aim of studying the evolution of the mesostructure of PAC-13 during the compaction process and correlating it with its macro-performance. The results showed that as th...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com