版权说明 操作指南
首页 > 成果 > 详情

IA-CDNet: Change Detection in Adverse Remote Sensing Image Conditions With an Advanced Image-Adaptive Method

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Wang, Zhipan;Yang, Zijun;Zhang, Qingling
通讯作者:
Zhang, QL
作者机构:
[Wang, Zhipan; Zhang, Qingling] Sun Yat Sen Univ, Shenzhen Key Lab Intelligent Microsatellite Conste, Shenzhen Campus, Shenzhen 518107, Guangdong, Peoples R China.
[Yang, Zijun] Changsha Univ Sci & Technol, Sch Phys & Elect Sci, Changsha 410205, Hunan, Peoples R China.
通讯机构:
[Zhang, QL ] S
Sun Yat Sen Univ, Shenzhen Key Lab Intelligent Microsatellite Conste, Shenzhen Campus, Shenzhen 518107, Guangdong, Peoples R China.
语种:
英文
关键词:
Adaptation models;Remote sensing;Deep learning;Transformers;Image enhancement;Adaptive filters;Optical filters;Feature extraction;Optical sensors;Optical imaging;Adverse image conditions;change detection;deep learning;image-adaptive;remote sensing imagery
期刊:
IEEE Transactions on Geoscience and Remote Sensing
ISSN:
0196-2892
年:
2025
卷:
63
页码:
1-19
基金类别:
10.13039/501100012166-National Key Research and Development Program of China (Grant Number: 2022YFE0209300) 10.13039/501100017677-Shenzhen Science and Technology Program (Grant Number: ZDSYS20210623091808026)
机构署名:
本校为其他机构
院系归属:
物理与电子科学学院
摘要:
Change detection using deep learning methods in optical remote sensing imageries has become the mainstream method, primarily due to their strong spatial-temporal transferability. However, current change detection models are designed for high-quality optical remote sensing imageries and seldom account for image conditions such as haze cover or low-light scenarios. As we know, the quality of optical remote sensing imageries can be severely degraded by haze or low-light conditions, which in turn significantly impairs the performance of change detection models. Yet there is still a lack of advance...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com