版权说明 操作指南
首页 > 成果 > 详情

Automatic Extraction of Water Body from SAR Images Considering Enhanced Feature Fusion and Noise Suppression

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Gao, Meijun;Dong, Wenjie;Chen, Lifu;Wu, Zhongwu
通讯作者:
Chen, LF
作者机构:
[Gao, Meijun; Chen, Lifu; Dong, Wenjie; Wu, Zhongwu; Chen, LF] Changsha Univ Sci & Technol, Sch Elect & Informat Engn, Changsha 410114, Peoples R China.
通讯机构:
[Chen, LF ] C
Changsha Univ Sci & Technol, Sch Elect & Informat Engn, Changsha 410114, Peoples R China.
语种:
英文
关键词:
SAR;water segmentation;neural network;attention mechanism
期刊:
Applied Sciences-Basel
ISSN:
2076-3417
年:
2025
卷:
15
期:
5
机构署名:
本校为第一且通讯机构
院系归属:
电气与信息工程学院
摘要:
Water extraction from Synthetic Aperture Radar (SAR) images is crucial for water resource management and maintaining the sustainability of ecosystems. Though great progress has been achieved, there are still some challenges, such as an insufficient ability to extract water edge details, an inability to detect small water bodies, and a weak ability to suppress background noise. To address these problems, we propose the Global Context Attention Feature Fusion Network (GCAFF-Net) in this article. It includes an encoder module for hierarchical feature extraction and a decoder module for merging mu...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com