版权说明 操作指南
首页 > 成果 > 详情

Stock Price Prediction based on SSA and SVM

认领
导出
下载 Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文、会议论文
作者:
Wen Fenghua*;Xiao Jihong;He Zhifang;Gong Xu
通讯作者:
Wen Fenghua
作者机构:
[He Zhifang; Wen Fenghua; Gong Xu] Cent S Univ, Sch Business, Changsha 410081, Hunan, Peoples R China.
[Xiao Jihong] Changsha Univ Sci & Technol, Sch Econ & Management, Changsha 410004, Hunan, Peoples R China.
通讯机构:
[Wen Fenghua] C
Cent S Univ, Sch Business, Changsha 410081, Hunan, Peoples R China.
语种:
英文
关键词:
Stock Price Series;Singular Spectrum Analysis;Support Vector Machine (SVM);Combination Predictive Methods
期刊:
Procedia Computer Science
ISSN:
1877-0509
年:
2014
卷:
31
页码:
625-631
会议名称:
2nd International Conference on Information Technology and Quantitative Management (ITQM)
会议论文集名称:
Procedia Computer Science
会议时间:
JUN 03-05, 2014
会议地点:
Natl Res Univ, Higher Sch Econ, Moscow, RUSSIA
会议主办单位:
Natl Res Univ, Higher Sch Econ
会议赞助商:
Int Acad Informat Technol & Quantitat Management, Yandex LLC, Chinese Acad Sci, Res Ctr Fictitious Econ & Data Sci, Univ Nebraska Omaha, Global Act Inc, CurrexSole
主编:
Shi, Y Lepskiy, A Aleskerov, F
出版地:
SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
出版者:
ELSEVIER SCIENCE BV
机构署名:
本校为其他机构
院系归属:
经济与管理学院
摘要:
This paper, using the singular spectrum analysis (SSA), decomposes the stock price into terms of the trend, the market fluctuation, and the noise with different economic features over different time horizons, and then introduce these features into the support vector machine (SVM) to make price predictions. The empirical evidence shows that, compared with the SVM without these price features, the combination predictive methods-the EEMD-SVM and the SSA-SVM, which combine the price features into the SVMs perform better, with the best prediction to the SSA-SVM. (C) ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com