版权说明 操作指南
首页 > 成果 > 详情

Dialysis machine alarm recognition based on convolutional neural network

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Huile Xie;Xiongjie Deng;Bin Dong;Liting Chen;Mingyang Song;...
通讯作者:
Liang Peng
作者机构:
[Huile Xie] Changsha Univ Sci & Technol, Sch Elect & Informat Engn, Changsha, Hunan, Peoples R China.
[Huile Xie] Cent South Univ, Dept Nephrol, Xiangya Hosp 3, Changsha, Peoples R China.
[Xiongjie Deng] Cent South Univ, Xiangya Hosp 2, Dept Nephrol, Changsha, Peoples R China.
[Bin Dong] Shandong Weigao Med Holdings Co Ltd, Dept Med Technol, Weihai, Peoples R China.
[Liting Chen; Mingyang Song] Peking Union Med Coll Hosp, Dept Nephrol, Beijing, Peoples R China.
通讯机构:
[Peng, L ] C
Changsha Univ Sci & Technol, Sch Artificial Intelligence, Changsha, Hunan, Peoples R China.
语种:
英文
关键词:
Convolutional neural network;Image recognition;YOLOv5;Hemodialysis;Dialysis machine alarms
期刊:
Renal Replacement Therapy
ISSN:
2059-1381
年:
2025
卷:
11
期:
1
页码:
1-9
基金类别:
Not applicable.
机构署名:
本校为第一且通讯机构
院系归属:
电气与信息工程学院
摘要:
Hemodialysis, a renal replacement treatment for end-stage renal failure, relies heavily on the proper functioning of the dialysis machine. Timely detection and handling of dialysis machine alarms are important to ensure the safety of dialysis treatment. This study proposes a method for recognizing dialysis machine alarms using a convolutional neural network (CNN). A dataset of dialysis machine alarm light images was created through a multicenter collaboration, which was used to train the YOLOv5 model. The study shows that the average recognition precision, recall, and mAP@0.5 for each warning ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com