Consider the inverse random source scattering problem for the two-dimensional time-harmonic elastic wave equation with a linear load. The source is modeled as a microlocally isotropic generalized Gaussian random function whose covariance operator is a classical pseudodifferential operator. The goal is to recover the principal symbol of the covariance operator from the displacement measured in a domain away from the source. For such a distributional source, we show that the direct problem has a unique solution by introducing an equivalent Lippma...