版权说明 操作指南
首页 > 成果 > 详情

INVERSE ELASTIC SCATTERING FOR A RANDOM SOURCE

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Li, Jianliang*;Li, Peijun
通讯作者:
Li, Jianliang
作者机构:
[Li, Jianliang] Changsha Univ Sci & Technol, Hunan Prov Key Lab Math Modeling & Anal, Sch Math & Stat, Changsha 410114, Peoples R China.
[Li, Peijun] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA.
通讯机构:
[Li, Jianliang] C
Changsha Univ Sci & Technol, Hunan Prov Key Lab Math Modeling & Anal, Sch Math & Stat, Changsha 410114, Peoples R China.
语种:
英文
关键词:
inverse source problem;elastic wave equation;Lippmann--Schwinger integral equation;Gaussian random function;uniqueness;78A46;65C30
期刊:
SIAM JOURNAL ON MATHEMATICAL ANALYSIS
ISSN:
0036-1410
年:
2019
卷:
51
期:
6
页码:
4570-4603
基金类别:
NNSF of ChinaNational Natural Science Foundation of China (NSFC) [11601042]; China Scholarship CouncilChina Scholarship Council [201708430060]; Education Department of Hunan Province [16C0035]; NSFNational Science Foundation (NSF) [DMS-1912704]
机构署名:
本校为第一且通讯机构
院系归属:
数学与统计学院
摘要:
Consider the inverse random source scattering problem for the two-dimensional time-harmonic elastic wave equation with a linear load. The source is modeled as a microlocally isotropic generalized Gaussian random function whose covariance operator is a classical pseudodifferential operator. The goal is to recover the principal symbol of the covariance operator from the displacement measured in a domain away from the source. For such a distributional source, we show that the direct problem has a unique solution by introducing an equivalent Lippma...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com